

eur PLANET NA1 - Innovation Through Science Networking Task 2 - Scientific Working Groups

itute ENCES AND ARTS CHAPMAN UNIVERSITY

Integration of satellite and groundbased observations and multi-disciplinarity in earthquake and volcano eruption forecast based on the LAIC physical model

Sergey Pulinets¹, Dimitar Ouzounov²

¹Space Research Institute, Russian Academy of Sciences, Moscow, Russia ²CEESMO, Chapman University, Orange, CA, USA

Middle and short-term pre-EQ phenomena

8 years ago...Tohoku earthquake in Japan Earthquakes progress as chain reactions

After Tom Jordan (SCEC, Monterey CA, 2011)

Integrated satellite and terrestrial framework (ISTF) for multi- parameter observations of pre-earthquake signals in Japan

We asked for help from the experts in the field

Sergey Pulinets

Hattori

Ben

Tsai

Taylor

Seiya Uyeda

Toshyasu Nagao

Dmitry Davidenko

Lou-Chuang Lee Lee

Cheng-Ling Kuo

Masashi Hayakawa

Michel Parrot

Xuhui Shen

Alexander Karelin

Antonella Peresan

Gerassimos

Papadopoulos

Peter

Shebalin

Liu

Jann-Yenq (Tiger)

Giovanni

Martinelli

Valerio Tramutoli

LAIC evolution

Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling

—A Concept for Pre-Earthquake Signals Generation

Sergey Pulinets1, Dimitar Ouzounov2, Alexander Karelin2, and Dmitry Davidenko2

Pre-Earthqu

2018

The Possibility of Earthquake Forecasting

Sergey Pullnets Diroitar Ouzouno

Matter and energy transformations on the way of precursor's generation

Nº	Sources	Consequences
1	Mechanical sources: tectonic movements, deformations, scale transformation, deformations, pressure variations, cracks formation	Gas and fluid migration, mechanic oscillations, foreshocks, triboelectricity, pressure-induced electricity, electrokinetic effects, slipping
2	Chemical sources: fluids and gases dissolution, chemical and plasma-chemical reactions, ion's hydration, catalytic processes	Heat release/absorption, change of atmosphere composition due to chemical reactions, ion clusters formation, change of electric properties of atmosphere, aerosol formation
3	Radon activity in air/radioactive decay	Air ionization, local modification of the Global Electric Circuit, generation of space charges, anomalous electric field, change of ionosphere potential
4	Troposphere modification	Formation of aerosol layers, anomlaies of VLF- VHF radiowaves propagation, local time dependence of ionosphere pre-earthquake anomalies
5	Ionosphere modification	Formation of anomalous magnetospheric ducts, particles precipitation, VLF anomalous emissions

Questions we asked about Pre- Earthquake processes

- Are any reliable multidisciplinary observations and models for pre-earthquake processes - seismic precursors, crustal geochemical fluids and gases; ULF/VLF magnetic signals; atmospheric effects including ionospheric TEC measurements?
- 2) Statistical correlation of pre-Earthquake signals with subsequent seismic events?
- 3) What is the **potential** of Pre-Earthquake signals for inter disciplinary earthquake predication /forecasting?

Integrations of satellite and ground-based observations and multi-disciplinarity in research and prediction of different types of hazards in Solar system 10-13 May 2019 Petnica Science Centre, Valjevo, Serbia

Integrated approach for pre-earthquake studies

a. Program on Integrated Search for Taiwan Earthquake Precursors (iSTEP)

Tsai et al. (2004)

b. Precursors of the Chi-Chi earthquake identified by <u>iSTEP</u>

Tsai et al. (2006)

The general and five component projects; b. Precursors of the M7.6 Chi-Chi earthquakee identified as of 2006 under the multidisplinary 'integrated Search for Taiwan Earthquake Precursors' (iSTEP) Program (Tsai et al., 2006, Tsai et al, 2018)

Following projects

2011-2013 under grant agreement No. 263502 – PRE-EARTHQUAKES project: Processing Russian and European EARTH observations for earthQUAKE precursors Studies (P.I.'s Tramutoli, Pulinets)

2013-2015 international team: Multi-instrument Space-Borne Observations and Validation of the Physical Model of the Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling (P.I.'s Pulinets & Ouzounov)

2014-2016 Ionospheric Sounding for Identification of Pre-Seismic Activity, INSPIRE project (P.I.'s Krankowski & Pulinets)

What is the advantage of the satellite observations?

What is this?

Ground point observations do not permit to reveal the integral picture of the precursors distribution

Earthquake preparation zone conception

Yellow and red spots – ground layer thermal anomalies,L'Aquila earthquake epicenter is marled by cross, blue circle – Earthquake preparation zone by Dobrovolsky $R=10^{0.43M}$, red circle – earthquake activation zone by Bowman et al., 1998 $R=10^{0.44M}$

Earthquake preparation zone for Gujarat M7.7 earthquake

© 2013 Cnes/Spot Image Data SIO, NOAA, U S, Navy, NGA, GEBCO Image © 2013 TerraMetrics Image U S, Geological Survey

Gujuarat and L'Aquila

Multi-disciplinarity from space

- Surface TIR anomalies
- Anomalous latent heat flux
- OLR (Outgoing Longwave Radiation)
- Chemical Potential Correction
- Electron concentration and temperature in the ionosphere
- ► GPS TEC anomalies
- ► GPS occultation measurements
- Ionosphere ion composition
- ≻ EF and EM emissions
- Topside sounding
- Low and high orbiting ionospheric tomography

Particle precipitation

Integrations of satellite and ground-based observations and multi-disciplinarity in research and prediction of different types of hazards in Solar system 10-13 May 2019 Petnica Science Centre, Valjevo, Serbia

Statistics and reliability of the ionospheric precursors (global)

Statistics of ionospheric precursors (Japan)

Positive GIM-TEC* anomaly

M >=5.9 140EQs (Region A: 0<R<1000 km)

Statistics of OLR thermal precursors (Japan)

Evaluation of TRA earthquake anomalies with Molchan's Error Diagram for Japan, 2014-2015 (Left to right) A. Distribution map for M>5.5 earthquakes, 2014-15; B. Temporal distribution (time-lag) of OLR anomalies in relation to the time occurrence of EQ; C: MED diagram. Duzounov et al, 2018

Multi-disciplinarity from on the ground

- Seismometers
- Deformographs, inclinometers
- Radon variations
- CO2 flux
- Aerosol content (AERONET, lidars)
- Atmospheric electric field
- ➢ Ion concentration and composition (mass distribution)
- Air conductivity
- Anomalies of radio waves propagation in different frequency bands (from VLF to VHF)
- Meteorological anomalies (air temperature, relative humidity)
- Ground based ionosondes (vertical and oblique sounding)
- GPS receivers
- Magnetometers

What advantage of the ground-based observations?

Higher sensitivity (starting from ~M2)

Higher operativity (real-time)

Continuity in time

Expert decisive role

Direct connection with seismological measurements

Local control

China: Map of earthquakes in main land China studies for pre-earthquake signals during 1966-2006

Frequency of pre-earthquake phenomena (>3000) that appeared prior to more then 270 earthquakes during 1986-2006, in China

Indicators of the synergetic character of the processes initiated by earthquake preparation

- Mutual dependence of precursor's parameters (earthquake preparation – the complex system)
- Synchronization in time and space
- Presence of the critical parameters (criticality concept)
- Presence of the non-linear processes
- Co-existance of the different phase states (vapor, condensate) in non-equilibrium state
- Catalytic reactions
- Cascade processes with the scale changes
- Presence of the non-reversable process indicator o "arrow of time"

 \triangleright Presence of the common time scale – 5 days

Earthquake preparation as a complex system

Radon repeats the cumulative law of the strain storing

Laser pumping effects in IIN

Model and experimental records of humidity variations under ionization

H

September-October 2005

Entropy of Earthquakes

De Santis et al., Entropy of Earthquakes, IWEAR 2011, Shenyang 18-20 September, 2011

Shannon entropy maximum (L'Aquial earthquake)

Nonlinearity – the branching points (threshold)

Some estimations

Each α -particle emitted by ²²²Rn with the average energy of E α =5.46 MeV can produce ~ 3.10⁵ electron-ion pairs.

Radon activity before earthquake is ~2000 Bq/m³ (Inan, 2008)

The ion production rate is ~6.10⁸ s⁻¹

The particle 1000 nm size contains 0.4.10¹² water molecules

During water vapor condensation process the latent heat release is $U_0 \sim 40.68 \cdot 10^3$ J/mol (1 mol = $6.022 \cdot 10^{23}$)

The given radon activity with formation of particles of 1000 nm size gives the thermal energy output 16 W/m^2

1 eV = $1.6 \cdot 10^{-19}$ J, with radon activity 2000 Bq/m³s it will give $1.7 \cdot 10^{-9}$ W

The energy gain of ionization process is $16/1.7 \cdot 10^{-9} \sim 10^{10}$

Synergy of the short-term earthquake precursors

Ground air temperature anomaly before the M7.6 Colima earthquake at Mexico 22 January 2003

Spatial synchronization

Colima, Mexico 2003

Sumatra M9 earthquake 26 Dec 2004

Time synchronization (Van earthquke, Turkey, 23.10.2011)

Time arrow

Synergy

Connection with seismology

Plasmachemistry-Thermal interface

Ionization, latent heat release and nucleation – (IIN)

Cluster ion's formation in the laboratory experiments

The mass spectra of OH⁻(H₂O)_n in ambient air with two different relative humidities at 24℃.

The mass spectra of $H_3O^+(H_2O)_n$ in ambient air with three different relative humidities at 24°C.

Mechanism of cluster ion's formation in the lower troposphere

How it works in nature Morozova, 2013

The factor which was not taken into account by previous studies

Laboratory proof

Time (hr)	Rn ²²² (kBq/m ³)	Temperature °C	Relative Humidity (%)	Absolute Humidity (g/m³)
1	0.043	20.2	28.5	5.0
2	0.029	20.2	75	13.2
M	ore tha	n 5000 J v	<i>iere rele</i>	eased
4	6.144	20.6	71.5	12.9
5	6.144	20.6	70.5	12.7
6	5.696	20.6	70.5	12.7
7	5.792	20.6	68.7	12.4
Drop ii	n absolute hu	midity = 0.8 (g/m	¹³) Specific L	_atent heat 2256 J/g
Expect	ted temperatu	re rise = 0,34 (°C	2)	
Obser	/ed tempertur	e rise = 0.4 (°C)		

Plasmachemistry-Electromagnetic

Boundary layer conductivity effect on the ionosphere Pulinets and Davidenko, 2014

50

West

East

West

50

East

10000 SWARM-B satellite

Ionospheric potential changes during period of nuclear weapon tests in atmosphere

Clobal Electric Circuit concept

Aerosols and atmosphere conductivity

Ion's mobility and atmosphere conductivity

$$i = e\left(n^{+}\mu^{+} + n^{-}\mu^{-}\right)E = \sigma E$$

$$\sigma = e\left(n^{+}\mu^{+} + n^{-}\mu^{-}\right)$$

$$\sigma = e\sum_{i=1}^{n}\left(n_{i}^{+}\mu_{i}^{+} + n_{i}^{-}\mu_{i}^{-}\right)$$

Ana-	Fraction Mobility		Diameter				
lyzer		$cm^2 V^{-1} s^{-1}$	nm				
	Small Cluster Ions						
IS ₁	N_1/P_1	2.51-3.14	0.36-0.45				
IS ₁	N_2/P_2	2.01-2.51	0.45-0.56				
IS_1	N_3/P_3	1.60-2.01	0.56-0.70				
IS ₁	N_4/P_4	1.28-1.60	0.70-0.85				
Big Cluster Ions							
IS ₁	N_5/P_5	1.02-1.28	0.85-1.03				
IS_1	N_6/P_6	0.79-1.02	1.03-1.24				
IS ₁	N_{7}/P_{7}	0.63-0.79	1.24-1.42				
IS ₁	N_8/P_8	0.50-0.63	1.42-1.60				
Intermediate Ions							
IS ₁	N_9/P_9	0.40-0.50	1.6-1.8				
IS_1	N_{10}/P_{10}	0.32-0.40	1.8 - 2.0				
IS ₁	N_{11}/P_{11}	0.25-0.32	2.0-2.3				
IS_2	N_{12}/P_{12}	0.150-0.293	2.1-3.2				
IS_2	N_{13}/P_{13}	0.074-0.150	3.2-4.8				
IS_2	N_{14}/P_{14}	0.034-0.074	4.8-7.4				
Light Large Ions							
IS_2	N_{15}/P_{15}	0.016-0.034	7.4-11.0				
IS_3	N_{16}/P_{16}	0.0091-0.0205	9.7-14.8				
IS_3	N_{17}/P_{17}	0.0042-0.0091	15-22				
Heavy Large Ions							
IS_3	N_{18}/P_{18}	0.00192-0.00420	22-34				
IS_3	N_{19}/P_{19}	0.00087-0.00192	34-52				
IS_3	N_{20}/P_{20}	0.00041-0.00087	52-79				

Key parameters

- Ion production rate $q_{i0} \approx 10^7 10^{10} \text{ m}^{-3} \text{s}^{-1}$
- Ion's concentration $n_i \approx 10^5 10^8 \text{ sm}^{-3}$
- Nucleus size 1 3 μm
- $\begin{array}{c} n_{LI}^{\bullet} \text{ Ion's mobility:} & n_{LI} \\ \hline n_{HI} & 1 \text{ air conductivity} & n_{HI} \\ \hline n_{HI} & \text{increase} & n_{HI} \\ \end{array}$

 $\frac{n_{LI}}{n_{HI}} \square_{aii} 1_{conductivity}$ $n_{HI} decrease$

Ionospheric effect of Aug 12-13/2012 sand storms

Ионосферный эффект извержения вулкана в Исландии в 2010 г.

Connection with tectonics

Volcano monitoring

Активность вулкана Ключевской в июне 2016 г.

Klyuchevskoy

Application of the GNSS total electron content (TEC) for detecting earthquake precursors

J.Y.Liu , H.Katsumi et al, 2018

Atmosphere- Ionospheric Integrated study for M7 earthquake in Kumamoto, Japan

(Ouzounov et al. 2018)

Long term correlation analyses among SSTAs and EQs occurrences

Test Area	Study Period	Number of processed TIR images	Number of Significant Sequences of TIR Anomalies (SSTAs)	SSTAs in possible connection with Eqs> 4		False Positive	
Italy⁹ [<i>Tramutoli</i> et al., 2015c]	June 2004 – December 2014 (01:00 LT)	2.861	28	17	61%	11	39%
Greece [<i>Eleftheriou</i> et al., 2015]	May 2004 – December 2013 (02:00 LT)	3.151	62	58	93%	4	7%
S-W US (California) [<i>Tramutoli</i> et al., 2014b]	June-July-August 2006–2011 (00:00 LT)	402	17	11	65%	6	35%
Taiwan [<i>Genzano</i> et al., 2015]	September 1995 - 2002 (21:00 LT)	240	18	18	100%	0	0%
Turkey¹⁰ [<i>Lisi</i> et al.,2016]	May 2004 – October 2015 (02:00 LT)	3.831	155	115	74%	40	26%
Japan¹¹ [<i>Genzano</i> et al., 2016]	June 2005 – December 2015 (00:30 LT)	2.006	60	37	<mark>62</mark> %	23	38%
TOTALS	57 YEARS	12.491	340	256	75%	84	25%

(Tramutoli et al, 2018)

JAPAN: Statistical analysis

98-13 EQ(M6.0~) 130' 140' 150° SEA Count 98-13 87EQ(M≧6.0, D≦4.0) range EQ=87(98-13) Prediction day = 1-5 40 0 5-day Counts Detection rate Counts 15 30 Alarm rate 0-30 -25 ^{−5} 0 5 Dyas from EQ -20 -15 -10 10 15 20 25 140 130" 150" 50 100 0

Evaluation of GPS/TEC Seismic Earthquake Anomalies (SEA) with Molchan's Error Diagram (MED) for Japan, 1998-2013 (Left to right) A. Distribution map for M>6 earthquakes, 1998-2013; B. Anomalous distribution: with green f- one day, with black 5-days accumulation data; C: MED diagram of 5-days accumulation data.

TAIWAN: Statistical analysis

Evaluation of GIM/TEC Seismic Earthquake Anomalies (SEA) with Molchan's Error Diagram for Taiwan, 1998-2013. (Left to right) A. Distribution map for M>6 earthquakes, 1998-2013; B. Anomalous distribution: with green - one day, with black - 5-days accumulation data; C: MED diagram for 5-days accumulation data

.[Liu et al, 2018]

Points to take home

- 1. Our current knowledge of the pre-earthquake phenomena has developed over last twenty-five centuries originating from the earliest scientific observation;
- 2. Pre- earthquake process is observable physical phenomena that precede seismic release;
- 3. Statistical connection has been established between pre-earthquake activity and the characteristics of subsequent seismic events;
- 4. The multi -disciplinary approach covers the data from seismic , physical, atmospheric and geochemical characteristics of pre-earthquakes;
- 5. Satellite and ground data integration Thermal Infrared, seismo-ionospheric and other satellite and ground-based pre-earthquake anomalies could reveal the location, intensity and timings of major earthquakes;
- 6. There is a strong potential of applying these multidisciplinary data to earthquake forecasting/prediction.
- 7. What is still missing? comprehensive validation trough operational testing

Vol.234, AGU Geophysical Monograph Series

Available in July 2018

