Yaroslav Vyklyuk

Bukovinian University, Chernivtsi, Ukraine,

Institute of laser and optoelectronics intelligent manufacturing, Wenzhou University, China,

Milan Radovanovich

Geographical Institute "Jovan Cvijić", Serbian Academy of Sciences and Arts, Belgrade, Serbia, South Ural State University, Institute of Sports, Tourism and Service, Chelyabinsk, Russia **Slavica Malinović Milićević**

University Center for Meteorology and Environmental Modelling, University of Novi Sad, Dr Zorana Djindjića

1

Deep Learning LSTM Recurrent Neural Network for consequence forecasting of the solar wind disturbance

Content

Preliminary analysis of input and target data *

Data transformation **

- Import and consolidation of data
- Aggregate data to equal sampling rates
 Filling and interpolation missing data
- Reduce of task dimension
- Creation and training of model ensembles
 - Linear models
 - Artificial Neural Network models
 - LSTM Recurrent Neural Network models
- Adequacy testing and sensitivity analysis
- Examples *
- Conclusions *

Goal

The task was to find functional dependencies between the parameters of solar wind (SW) and the main characteristics of hurricanes: the speed of wind and pressure.

The main characteristics of the investigated hurricanes

	Irma	Jose	Katia
The beginning	30 Aug. 2017 at 12:00 UTC	5 Sep. 2017 at 12:00 UTC	5 Sep. 2017 at 18:00 UTC
The end	12 Sep. 2017 at 00:00 UTC	21 Sep. 2017 at 18:00 UTC	9 Sep. 2017 at 20:00 UTC
Date of maximum wind speed	6 Sep. 2017 at 6:00 UTC	9 Sep. 2017 at 11:00 UTC	8 Sep. 2017 at 18:00 UTC
Duration	13 days	16 days	4 days
Sampling	6 hr	6 hr	6 hr
Number of observations	52	66	15

Preliminary analysis of target data.

Wind speed (a) and pressure (b) for hurricanes Irma, Jose and Katia. Black arrows represent dates of maximum wind speed and air pressure

The main characteristics of the investigated hurricanes

The Unisys was the source of data on the hurricanes Irma, Jose, and Katia. The data included maximum sustained winds in knots, and central pressure in millibar (mb) for the periods of 6 hours (0-6 hr, 6-12 hr, 12-18 hr, and 18-24 hr). The 5-minutes data on solar particle and electron flux (source: GOES-15) were provided by the Space Weather Prediction Center. The particles are protons (P) at > 1 MeV, > 5 MeV, > 10 MeV, > 30 MeV, > 50 MeV, and > 100 MeV. The data on electrons (E) included > 0.8 MeV and > 2.0MeV. The source of daily solar radio flux at 10.7 cm (2 800 MHz) was Space Weather Prediction Center. The data on proton speed (km/s) and proton density (protons per cubic centimetre) were obtained from data archive of the SOHO CELIAS Proton Monitor.

Characteristics of the set of SW

Frame	The characteristics of solar activity	Units of measurement	The beginning	The end	Sampling
1	P > 1, P > 5, P > 10, P > 30, P > 50, and P > 100	Protons (> MeV)/(cm ² ·s)	28 Aug. 2017 at 00:00 UTC	22 Sep. 2017 at 00:00 UTC	5 min
2	E > 0.8 and E > 2.0	Electrons (> MeV)/(cm ² ·s)	28 Aug. 2017 at 00:00 UTC	22 Sep. 2017 at 00:00 UTC	5 min
3	Radio Flux 10.7		28 Aug. 2017 at 00:00 UTC	21 Sep. 2017 at 00:00 UTC	1 day
4	Proton speed	km/s	28 Aug. 2017 at 00:00 UTC	22 Sep. 2017 at 00:00 UTC	1 hour
5	Proton density	Protons/cm ³	28 Aug. 2017 at 00:00 UTC	22 Sep. 2017 at 00:00 UTC	1 hour

Import and consolidation of data

(1)

 $DF_f = (Key = Date \& Time: Data = < Field_{f_1}, ..., Filed_{f_n} >)$ where f - frame number from Table 1, $Field_{f_i} - i$ -th field of Frame f.

Data transformation. Aggregate data to equal sampling rates

Sparse matrix

(2)

$DF = DF_1 \cdot DF_2 \cdot DF_3 \cdot DF_4 \cdot DF_5$

022 2010-03-22 13.70.00 1.0 0 313 -70300	005	25	2000	21.0	2.05	0.047	0.10									
823 2018-03-22 13:41:00 4.8 318.4 43700																
824 2018-03-22 13:42:00 4.8 319.9 35800								-		-		-				
825 2018-03-22 13:43:00 4.3 321.7 31800								204	~ ~ ~	~ ~ ~		~				
826 2018-03-22 13:44:00 4.7 321.6 33500								201	8-04-	·04 5:	:00:0	U				
827 22.3-03-22 13:45:0. 1.61 5.4 318.4 34700	724	35.6	2660	20	2.9	0.587	· —							_		
82 2018-03-22 13:46:00 6.2 318.9 32700								2010			20.0	n				
8 9 2018-03-22 13:47:00 5.3 319.6 34300								2010	0-04-	U4 3	50:0	U				
8 0 2018-03-22 13:48:00 5 320.7 500										11111				-		
83 2018-03 13:49:00 4.7 322.7								2019	$R_0/$	4 6	00.00	0				
832 118-03-2, 3:50:00 1.63 4.6 324.4 3000	678	32.7	2440	22.1	2.73	0.94			Tabel a	TU						
833 2018 22 4.7 324.7 31300								204	HERE		20.0	~				
834 2018-03-22 13. 00 4.6 324.2 32500								201	-04-	·U4 63	:30:0	U				
835 2018-03-22 13:5									·					-		
836 2018-03-22 13:54:0			2019.04	04 2.20.00		1 2 25		/019	Q_N/_	01 7	00.0	Λ		2 464	1 110516	02.65
837 2018-03-22 13:55:00 1.62 4.4 322.2 37600	87	8 	2018-04	-04 2.30.00		3.25		ZUT	0-04-	04 /	.00.0	U		13.404	4.119540	93.03
838 2018-03-22 13:56:00 4.2 322.2 33500			10-04	-04 3:00:00		3.5						-		- 4.005	4.075011	95.0579
839 2018-03-22 13:57:00 3.4 313 32100		55	8-04	-04 3:30:00		3.5		2019	D_UV	ΠΛ 7	20.0	n		7.079	3.121987	99.9270
840 2018-03-22 13:58:00 4.2 321.2 38600	4	6	-04	-04 4:00:00		111111	55.025	557.0715	5.527545	55.70500	557.0100	0.004074	00.10044	1010.374	3.09454	97.1762
841 2018-03-22 13:59:00 4.8 320.9 39800 942 2018-02 23 14:00:00 1.6 4.7 231.7 45400	620	37	2018-04	-04 4:30:00		3.25	95.625	996.9219	3.31066	95.59476	996.9341	0.981509	60.9543	1013.873	3.178604	93.159
842 2018-03-22 14:00:00 1.05 4.7 521.7 45400	620	38	2018-04	1-04 5:00:00		3	95.625	996	3.103279	95.16736	995.9721	1.070607	56.59243	1016.385	3.155539	93.1371
		39	2018-04	1-04 5:30:00		3	93.875	995	2.995643	94.12655	995.0237	1.36084	52.93759	1017.933	3.103667	93.8842
2018-03-2018:38:00		10	2018-04	1-04 6:00		2.875	93.875	994.3281	2.899033	93.6638	994.302	1.68797	49.19468	1018.796	2.650829	96.8411
		11	2000-04	F-0/4		2.625	95.625	994.0781	2.658113	94.80949	993.9664	2.128032	46.3639	1019.434	2.233355	100.169
2010 02 22 0.20.00		12	2018-04	+7:00:00		2.375	97.375	994.25	2.414991	96.92653	994.2252	2.506583	43.92906	1019.651	2.022562	100.099
2018-03-22 18:39:00		13	2018-04	-04 7:30:00		2.125	99.125	994.75	2.147945	98.92922	994.6669	2.991714	42.46909	1019.422	2.166277	100.082
	_	14	2018-04	-04 8:00:00		2	100	995.25	1.978438	99.67296	995.0621	3.494681	42.01793	1019.021	2.25626	99.9356
2010 02 22 10.40.00		15	2018-04	-04 8:30:00		2	98.25	995.5	1.996971	98.67192	995.4346	3.94645	41.82585	1018.401	2.201906	94.5178
2018-03-22 18:40:00		16	2118-04	1-04 9:00:00		2	96.5	995.75	2.035414	96.68833	995.6493	4.265975	42.14756	1017.939	2.08762	92.9149
		17	2018-04	00:012121210:00		2	94.75	996	2.061882	95.04198	995.8647	4.517285	42.19535	1017.454	2.248644	93.8967
2010 02 22 10.41.00		18	2018-04	-04 10:00:00		2.125	93	996.25	2.140334	93,94968	996.228	4.671579	42,60011	1016.999	2.639328	93.6376
2010-02-22 10:41:00		19	2018-04	-04 10:30:00		2 375	93	996 75	2 373611	92 64611	996 6095	4 741634	43 72392	1016 384	3 180184	93 5992
	-	:0	2018-04	-04 11:00:00		2.675	90.75	997	2 665468	91 00737	996 8448	4 662791	46 04695	1015 664	3 217878	84 8980
2010-02-22 10.42.00		;1	2018-04	-04 11.20.00		2.025	86.25	007	2 90/201	86 96204	996 9194	4 46054	49 46919	101/ 839	3 163012	76 0852
2010-02-22 10:42:00		:2	2010-04	-04 12:00:00		2.075	82 27E	997	2.504091	82 17970	007 0110	1 156210	52 0011	1012 071	2 6/62/1	78 /625
	-	:2	2010-04	04 12:00:00		2.075	70 125	007 2222	2.09308	70 10146	007 1512	4.130319	55.0211	1012.371	2.040341	00.0046
2010 02 22 10.42.00			2018-04	-04 12:50:00		2.025	/9.125	331.3333	2.088129	79.10146	997.1512	5.809407	58.70034	1013.1/6	2.195023	30.8246
	-		2018-04	-04 13:00:00		2.375	//.5	997.875	2.38/686	77.37521	997.729	3.522881	03.5898/	1012.584	2.165552	78.1601
		.5	2018-04	-04 13:30:00		2.125	77.5	998.625	2.130816	/7.04908	998.4045	3.374279	67.62822	1012.237	2.228983	/6.4001
		6	2018-04	-04 14:00:00	9	2	78.125	999.2917	2.025906	77.29663	999.1145	3.332483	69.93306	1012.109	2.154964	80.4872
		. 7	2010 04	0414.20.00	/	2	70 175	1000 042	2 010603	77 67500	000 00	2 2/1775	70 02617	1013 006	7 15777/	00 0715

Data transformation. Aggregate data to equal sampling rates

Max (mean) scale

dt_na=DS[i-1:i+b,l],
value = numpy.mean(dt_na[~numpy.isnan(dt_na)]).

Data transformation: Filling and interpolation missing data

Cubic spline interpolation using Hermite polynomials (PCHIP)

Correlation analysis of input factors

	P>1	P > 5	P > 10	P > 30	P>50	P > 100	E > 0.8	E > 2.0	Speed	Density	Radio Flux 10.7
P > 1	1.00										
P > 5	0.77	1.00									
P > 10	0.66	0.97	1.00								
P > 30	0.56	0.91	0.98	1.00							
P > 50	0.52	0.87	0.95	0.99	1.00						
P > 100	0.45	0.78	0.87	0.94	0.98	1.00					
E > 0.8	-0.19	-0.12	-0.05	0.01	0.03	0.06	1.00				
E > 2.0	-0.20	-0.17	-0.12	-0.09	-0.07	-0.06	0.81	1.00			
Speed	0.26	0.11	0.09	0.07	0.07	0.07	0.13	0.02	1.00		
Density	0.27	0.13	0.09	0.07	0.06	0.04	-0.38	-0.19	0.00	1.00	
Radio Flux 10.7	0.12	-0.04	-0.15	-0.20	-0.19	-0.16	-0.07	-0.22	-0.11	-0.10	1.00

Data transformation. Reduce of task dimension

Normalized input parameters of proton flows (a), electron flows (b), speed, density, and Radio Flux (c).

Consolidated correlation lag analysis of input factors

	P>1	P > 5	P > 10	P > 30	P > 50	P > 100	E > 0.8	E > 2.0	Speed	Density	Radio Flux 10.7			
				Wind	l speed of	the Irma	a hurrica	ne						
Max	0.21	0.37	0.33	0.20	0.20	0.18	0.73	0.54	0.39	0.07	0.86			
Lag	6	6	7	7	7	9	14	13	20	7	6			
	Pressure of the Irma hurricane													
Min	-0.38	-0.46	-0.43	-0.33	-0.33	-0.22	-0.81	-0.61	-0.51	0.03	-0.91			
Lag	7	6	7	7	7	9	14	14	20	7	9			
	Wind speed of the Jose hurricane													
Max	0.44	0.13	0.12	0.13	0.14	0.16	0.18	0.21	0.45	0.15	0.72			
Lag	7	0	0	0	0	0	20	20	3	12	18			
				Pre	essure of t	he Jose h	nurrican	e						
Min	-0.37	-0.02	-0.02	-0.07	-0.09	-0.11	-0.33	-0.25	-0.53	-0.24	-0.47			
Lag	7	10	0	0	0	0	0	20	4	12	19			
				Wind	speed of	the Katia	a hurrica	nne						
Max	0.55	0.57	0.65	0.68	0.62	0.74	0.68	0.61	0.66	0.51	0.84			
Lag	0	9	11	2	12	11	19	19	0	1	17			
				Pres	ssure of th	ne Katia	hurrican	e						
Min	-0.58	-0.70	-0.68	-0.76	-0.65	-0.77	-0.76	-0.68	-0.71	-0.53	-0.91			
Lag	1	9	11	2	2	11	19	19	0	1	17			

Parallel calculations for finding optimal models

$$T = (T_1, T_2, T_3, T_4, T_5, T_6),$$
(3)
$$X = (X_1, X_2, X_3, X_4, X_5),$$
(4)

where is time series of the wind speed and the pressure of Irma, Jose, and Katia hurricanes respectively; is time series of P > 100, E > 2.0, speed of solar wind particles, density of solar wind particles, and Radio Flux 10.7 respectively.

The task is to find for each the most accurate and adequate functional dependence of the type:

$$T_i = F_i(X, L_i, \Omega_i), \qquad (5)$$

where $L_i = \{l_{ij}\}_{j=1,5}$ is the vector of optimal lags and Ω_i is parameter of the linear or the artificial neural network model

Parallel calculations for finding optimal models

(6)

$$\begin{split} R_i^2 \big(T_i, F_i^{cv}(X, L_i, \Omega_i) \big) & \xrightarrow{yields} max \\ \text{Solution variables: } L_i \in Tasks, \Omega_i \\ \text{Limitations: } l_{ij} < 22; \\ \max\{l_{ij}\} < (lag - 2)_{Lag=\overline{0-22}}, \end{split}$$

where $F_i^{cv}(X, L_i, \Omega_i)$ is the cross-validation results for k-blocks (k-fold cross-validation), Ω_i the parameter of the model, which is determined by fitting the initial model data to the target vector, the fitting method depends on the type of model (linear, neural network, etc.). The optimization was done by completely scanning all possible combinations of the lag vector L_i for each component of $x_i = \{x_{ij}\}_{j=1,5}$ from 0 to 22. The magnitude of the maximum lag was chosen from the preliminary analysis of the Table 4, where the maximum lag was 20

Parallel calculations for finding optimal models

In this case, the set of lag combinations is defined as the Cartesian product of the test lag vectors for each input parameter and is $23^{5} \cdot 11 \cdot 6 = 424,798,638$

$$Tasks(22) = \prod_{j=1,5} L(22),$$
(7)
where $L(22) = \{0, 1, ..., 22\}.$

The implementation of the Cartesian product by means of Python was carried out as follows

lag_list=[list(range(lag+1))]*len(X),
task_lag=list(itertools.product(*lag_list)),

Parallel calculations algorithm for finding an optimal model

- 1. The first maximum number of lags is determined lag = 0.
- 2.A set of tasks is formed based on the equation (7):
- 3.For the first run Tasks (lag).
- 4.For the next runs in order to avoid repetitions of tasks the difference of sets needs to be calculated *Tasks (lag)* '= *Tasks (lag)* \ *Tasks (lag-1)*.
- 5. The optimal model is found according to equation (6).
- 6.If the maximum lag value for any component of the optimal model does not exceed *lag-2*, it is assumed that the optimal value is found and the algorithm is completed.
- 7. If lag = 22, the algorithm is completed and is considered to have no optimal value.
- 8.Increase lag + = 1 and move to step 1.

Multilayer perceptrons

ANN:

Type: Multilayer perceptrons (MLPs) with back propagation **Inputs:** 5 **Output:**1 **Hidden layer:** 1 **Number of neurons:** 7 **Method of training:** quasi-Newtonian **Activation function:** logistic function

Python:

framework: sklearn.neural_network
function: MLPRegressor
fitting: fit and cross_val_predict

Ensemble of models by Delphi method

- 1. Several neural networks were created and studied for each model according to equation (5). In our case, their optimal number was nine. Their increase did not improve the result.
- 2. Predictive values were calculated on the test sets of data using the cross-validation method for each of the networks. The result was a matrix of type:

$$Res_{i} = \begin{bmatrix} f_{i1}^{1} & \cdots & f_{im}^{1} \\ \vdots & \ddots & \vdots \\ f_{i1}^{9} & \cdots & f_{im}^{9} \end{bmatrix}, \qquad (6)$$

where *m* is the size of the training sample for a particular vector of the goals, the upper index is the serial number of the neural network.

- 3. Each column was sorted and then 10% of records with minimum and maximum values were removed from the records.
- 4. For the remaining values for each of the columns the median was determined, which was considered to be the result.

Res =numpy.sort(Res, axis=0)[int(len(Res)*0.1):- int(len(Res)*0.1), :],

Recurrent neural network with long short-term memory (LSTM)

LSTM:

Inputs: 6 Output:1 Hidden layer: 1 LSTM Number of neurons: 7 Method of training: adam Loss function: mse

Python: framework: TensorFlow **fitting:** fit and cross val predict

Recurrent neural network with long short-term memory (LSTM)

$$X_{L}^{i} = (X_{1}(t-1), \dots, X_{5}(t-1), T_{i}(t-1), X_{1}(t-t_{L}), \dots, X_{5}(t-t_{L}), T_{i}(t-t_{L}) >) (7)$$
$$X_{3D,L}^{i} = (X_{1}(t-l)_{l=\overline{1,L}}, \dots, X_{5}(t-l)_{l=\overline{1,L}}, T_{i}(t-l)_{l=\overline{1,L}}) (8)$$

where t - row index, L - maximum lag value, i - target index (2)

Cross-validation

Overfitting test. Dynamics of the mean square error during the fitting LSTM for the training and test samples

Adequacy testing and sensitivity analysis

Parallel calculations results of artificial neural networks and linear models

Results of hurricane forecasting with linear models and artificial neural networks for: (a) Wind speed of the Irma hurricane, (b) Pressure of the Irma hurricane, (c) Wind speed of the Jose hurricane, (d) Pressure of the Jose hurricane, (e) Wind speed of the Katia hurricane, (f) Pressure of the Katia hurricane

Accuracy analysis

Hurrican	Daramatar	eter <u>Model</u> Equation Type		Numbers of	Lags	R^2	R ² Cross
e	I di dificici			tests models	Lags	Full dataset	validation
		$F_1(X, L_1, \Omega_1^{Lin})$	Linear	1,048,576		0.89	0.85
	Wind speed	$\{F_1(X,L_1,\Omega_1^{ANN})\}$	ANN	99	$L_1 = (5, 15, 11, 2, 7)$	0.89	0.75
Irma	.1	$\left\{F_1\left(X_{3D,L},L_{LSTM},\Omega_1^{LSTM}\right)\right\}$	LSTM	99	$L_{LSTM} = \{l_i = \overline{1,4}\}_{i=\overline{1,6}}$	0.98	0.88
		$F_2(X, L_2, \Omega_2^{Lin})$	Linear	759,375	L = (2, 2, 12, 11, 10)	0.90	0.88
	Pressure	$\{F_2(X,L_2,\Omega_2^{ANN})\}$	ANN	99	$L_2 = (2, 2, 12, 11, 10)$	0.90	0.87
		$\left\{F_2\left(X_{3D,L},L_{LSTM},\Omega_1^{LSTM}\right)\right\}$	LSTM	99	$L_{LSTM} = \{l_i = \overline{1,4}\}_{i=\overline{1,6}}$	0.99	0.93
		$F_3(X, L_4, \Omega_4^{Lin})$	Linear	5,153,632	$I = (4 \ 10 \ 2 \ 14 \ 18)$	0.86	0.77
	Wind	$\{F_3(X,L_4,\Omega_4^{ANN})\}$	ANN	99	$L_3 = (4, 19, 5, 14, 18)$	0.86	0.74
Jose	1	$\left\{F_3\left(X_{3D,L},L_{LSTM},\Omega_1^{LSTM}\right)\right\}$	LSTM	99	$L_{LSTM} = \{l_i = \overline{1,4}\}_{i=\overline{1,6}}$	0.98	0.61
		$F_4(X, L_4, \Omega_4^{Lin})$	Linear	5,153,632	L = (5, 2, 4, 11, 10)	0.69	0.56
	Pressure	$\{F_4(X,L_4,\Omega_4^{ANN})\}$	ANN	99	$L_4 = (3, 2, 4, 11, 19)$	0.58	0.70
		$\left\{F_4\left(X_{3D,L},L_{LSTM},\Omega_1^{LSTM}\right)\right\}$	LSTM	99	$L_{LSTM} = \{l_i = \overline{1,4}\}_{i=\overline{1,6}}$	0.98	0.45
		$F_5(X, L_5, \Omega_5^{Lin})$	Linear	100,000	$L = (2 \in 0, 4, 4)$	0.98	0.96
	Wind speed	$\left\{F_5\left(X,L_5,\Omega_5^{ANN}\right)\right\}$	ANN	99	$L_5 = (2, 0, 0, 4, 4)$	0.72	0.34
Katia	1	$\left\{F_5\left(X_{3D,L}, L_{LSTM}, \Omega_1^{LSTM}\right)\right\}$	LSTM	99	$L_{LSTM} = \{l_i = \overline{1,4}\}_{i=\overline{1,6}}$	0.95	0.48
		$F_6(X, L_6, \Omega_6^{Lin})$	Linear	59,049	L = (5, 2, 2, 1, 0)	0.98	0.96
	Pressure	$\{F_6(X,L_6,\Omega_6^{ANN})\}$	ANN	99	$L_6 = (5, 2, 3, 1, 0)$		0.53
		$\left\{F_5\left(X_{3D,L},L_{LSTM},\Omega_1^{LSTM}\right)\right\}$	LSTM	99	$L_{LSTM} = \{l_i = \overline{1,4}\}_{i=\overline{1,6}}$	0.99	0.38
Total			Linear	12,274,264			
Total			ANN	26 ⁵⁹⁴			

LSIM

594

Linear models

 $F_1(X, L_1, \Omega_1^{Lin}) = -16.44 - 1.09 \cdot x(3)_1 + 2.88 \cdot 10^{-04} \cdot x(13)_2 - 0.05 \cdot x(11)_3 + 0.85 \cdot x(2)_4 + 1.40 \cdot x(7)_5,$

 $F_2(X, L_2, \Omega_2^{Lin}) = 1067.52 + 0.55 \cdot x(2)_1 - 5.42 \cdot 10^{-04} \cdot x(2)_2 + 0.02 \cdot x(12)_3 + 0.63 \cdot x(11)_4 - 1.17 \cdot x(10)_5,$

 $F_3(X, L_3, \Omega_3^{Lin}) = -80.15 - 0.71 \cdot x(4)_1 + 4.93 \cdot 10^{-04} \cdot x(19)_2 + 0.12 \cdot x(3)_3 + 1.62 \cdot x(14)_4 + 0.84 \cdot x(18)_5,$

 $F_4(X, L_2, \Omega_2^{Lin}) = 1073.42 + 0.54 \cdot x(5)_1 - 2.83 \cdot 10^{-04} \cdot x(2)_2 - 0.08 \cdot x(4)_3 - 1.27 \cdot x(11)_4 - 0.52 \cdot x(19)_5,$

 $F_5(X, L_5, \Omega_5^{Lin}) = -413.61 - 94.62 \cdot x(2)_1 - 8.08 \cdot 10^{-04} \cdot x(6)_2 + 0.17 \cdot x(0)_3 - 1.88 \cdot x(4)_4 + 3.14 \cdot x(4)_5,$

 $F_6(X, L_6, \Omega_6^{Lin}) = 783.42 - 26.24 \cdot x(5)_1 + 1.42 \cdot 10^{-04} \cdot x(2)_2 + 0.12 \cdot x(3)_3 - 2.30 \cdot x(1)_4 + 1.19 \cdot x(0)_5.$

Adequacy testing and sensitivity analysis

$$V = \begin{bmatrix} 0.1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & 0.1 \end{bmatrix}_{5 \times 5}$$
$$A^{r} = \begin{bmatrix} x_{1}^{r} & \cdots & x_{5}^{r}\\ \vdots & \ddots & \vdots\\ x_{1}^{r} & \cdots & x_{5}^{r} \end{bmatrix}.$$
$$T^{r} = (V+1) \cdot A^{r} = \begin{bmatrix} 1.1 \cdot x_{1}^{r} & \cdots & 1.0 \cdot x_{5}^{r}\\ \vdots & \ddots & \vdots\\ 1.0 \cdot x_{1}^{r} & \cdots & 1.1 \cdot x_{5}^{r} \end{bmatrix}$$

 $S_i^r = F_i \Big(T^r, L_i, \Omega_i^{Lin(ANN)} \Big) = \begin{bmatrix} f_{i,x_1}^r \\ \vdots \\ f_{i,x_5}^r \end{bmatrix}.$

$$S_i = \begin{bmatrix} (S_i^1)^T \\ \vdots \\ (S_i^N)^T \end{bmatrix}.$$

$$M_i = \{m_i^r\}_{r=\overline{1-N}} = F_i\left(X, L_i, \Omega_i^{Lin(ANN)}\right)$$

$$Mx_{i} = \begin{bmatrix} m_{i}^{1} & \cdots & m_{i}^{1} \\ \vdots & \ddots & \vdots \\ m_{i}^{N} & \cdots & m_{i}^{N} \end{bmatrix}_{N \times 5}$$

$$D = (S_i - Mx_i)/Mx_i,$$

Sens = \overline{D}_{col} .

Sensitivity analysis

Hurricane	Parameter	Model	P > 100	E > 2.0	Speed	Density	Radio Flux 10.7
		Linear	-0.63%	0%	-2.51%	0%	14%
	Wind speed	ANN	-0.65%	0%	-2.64%	0%	13%
Turna		LSTM	-13%	-9%	-28%	40%	0%
Irma		Linear	0%	-0.04%	0%	0%	-1.36%
	Pressure	ANN	0%	-0.04%	0%	0%	-1.36%
		LSTM	0%	-1%	-2%	-1%	0%
-		Linear	-0.26%	1%	9%	1%	11%
	Wind speed	ANN	-0.26%	1%	9%	1%	11%
		LSTM	-0%	-18%	2%	-4%	124%
Jose	Pressure	Linear	0%	-0.04%	-0.42%	-0.04%	-0.53%
		ANN	0%	1%	4%	0%	5%
		LSTM	-0%	-0%	-7%	4%	-45%
		Linear	-1.07%	-1.19%	18%	-1.17%	75%
	Wind speed	ANN	0%	-1.30%	9%	-0.64%	3%
V = 4 ² =		LSTM	5%	25%	548%	207%	1%
Katia		Linear	-0.02%	0%	1%	-0.07%	1%
	Pressure	ANN	0%	-0.14%	3%	1%	7%
		LSTM	-3%	1%	7%	-10%	-8%

Sensitivity analysis

Hurricane	Parameter	Model	P > 100	E > 2.0	Speed	Density	Radio Flux 10.7
		Linear	-0.63%	0%	-2.51%	0%	14%
	Wind speed	ANN	-0.65%	0%	-2.64%	0%	13%
Turna		LSTM	-13%	-9%	-28%	40%	0%
Irma		Linear	0%	-0.04%	0%	0%	-1.36%
	Pressure	ANN	0%	-0.04%	0%	0%	-1.36%
		LSTM	0%	-1%	-2%	-1%	0%
-		Linear	-0.26%	1%	9%	1%	11%
	Wind speed	ANN	-0.26%	1%	9%	1%	11%
		LSTM	-0%	-18%	2%	-4%	124%
Jose	Pressure	Linear	0%	-0.04%	-0.42%	-0.04%	-0.53%
		ANN	0%	1%	4%	0%	5%
		LSTM	-0%	-0%	-7%	4%	-45%
		Linear	-1.07%	-1.19%	18%	-1.17%	75%
	Wind speed	ANN	0%	-1.30%	9%	-0.64%	3%
V = 4 ² =		LSTM	5%	25%	548%	207%	1%
Katia		Linear	-0.02%	0%	1%	-0.07%	1%
	Pressure	ANN	0%	-0.14%	3%	1%	7%
		LSTM	-3%	1%	7%	-10%	-8%

Examples

Detroit (USA) weather forecasting by LSTM ensemble

Linear vs ANFIS. Portugal

Hurricanes forecasting by ANFIS

Forest fires forecasting for USA

Sensitivity of factors

Conclusions

Considering the potential prognostic models, one should certainly bear in mind that for solar flares from active regions located at the East of the helilongitude, the time delay (between emission and the ground level enhancement onset) can be from several hours up to days. Almost all diffusion models involving solar particle transport in the interplanetary medium show that the maximum time delay is proportional to the square of the distance traveled.

The efficiency of the penetration depends on the degree to which the interplanetary magnetic field provides input of the particle flux to the region with the given angle and/or in what percent relation the particles of the given direction are present in the flux with a high angular isotropy.

Research in this paper has shown that applied model is accurate and adequate to predict the appearance of hurricanes 2–4 days ahead, after the outbreak of SW. High correlation coefficients sustain the previous conclusion. About 90% of variations of the Irma hurricane can be explained by the model. Jose is the hurricane in the Pacific Ocean, which has larger scale, and therefore the processes of the influence of external factors are more inertial, which explains a bigger lag in the calculations. The sensitivity analysis revealed that Radio Flux 10.7 has the greatest impact on wind speed of the hurricanes, except in the case of the Katia hurricane. In the general picture of the change in pressure and wind speed over a longer period, there are other factors that were not taken into account in the model. Therefore, the model for Jose was less accurate, but quite adequate. The Katia hurricane was the least lengthy and the data were not enough to test the hypothesis in this case. In all cases LSTM models showed the best results. But for effective use it the big data sets should be obtained.

The coupling of the stratosphere with surface climate is one good candidate to better understand the signals of the future climate changes. Vertical wind shear was shown to be a much more fundamental component for major hurricane development and maintenance

Thank you for attention

Prof. Yaroslav Vyklyuk Dr.Sc.