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Goal

The task was to find functional dependencies between 
the parameters of solar wind (SW) and the main 
characteristics of hurricanes: the speed of wind and 
pressure.
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The main characteristics of the investigated 
hurricanes

Irma Jose Katia

The beginning 30 Aug. 2017 
at 12:00 UTC

5 Sep. 2017 
at 12:00 UTC

5 Sep. 2017 
at 18:00 UTC

The end 12 Sep. 2017 
at 00:00 UTC

21 Sep. 2017 
at 18:00 UTC

9 Sep. 2017 
at 20:00 UTC

Date of maximum 
wind speed

6 Sep. 2017 
at 6:00 UTC

9 Sep. 2017 
at 11:00 UTC

8 Sep. 2017 
at 18:00 UTC

Duration 13 days 16 days 4 days

Sampling 6 hr 6 hr 6 hr

Number of 
observations 52 66 15

Preliminary analysis of target data. 
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Wind speed (a) and pressure (b) for hurricanes Irma, Jose and Katia. Black 
arrows represent dates of maximum wind speed and air pressure 

Preliminary analysis of target data. 
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The main characteristics of the investigated 
hurricanes

Preliminary analysis of input data. 

The Unisys was the source of data on the hurricanes Irma, Jose, 
and Katia.The data included maximum sustained winds in knots, 
and central pressure in millibar (mb) for the periods of 6 hours 
(0–6 hr, 6–12 hr, 12–18 hr, and 18–24 hr). The 5-minutes data on 
solar particle and electron flux (source: GOES-15) were provided 
by the Space Weather Prediction Center. The particles are protons 
(P) at > 1 MeV, > 5 MeV, > 10 MeV, > 30 MeV, > 50 MeV, and > 100 
MeV. The data on electrons (E) included > 0.8 MeV and > 2.0 
MeV. The source of daily solar radio flux at 10.7 cm (2 800 MHz) 
was Space Weather Prediction Center.The data on proton speed 
(km/s) and proton density (protons per cubic centimetre) were 
obtained from data archive of the SOHO CELIAS Proton Monitor.

!6



Characteristics of the set of SW
Preliminary analysis of input data. 

Frame The characteristics of solar 
activity

Units of 
measurement

The 
beginning The end Sampling

1
P > 1, P > 5, P >10,  
P > 30, P > 50, and  
P > 100

Protons  
(> MeV)/(cm2·s)

28 Aug. 2017 
at 00:00 UTC

22 Sep. 2017 
at 00:00 UTC 5 min

2 E > 0.8 and E > 2.0 Electrons  
(> MeV)/(cm2·s)

28 Aug. 2017 
at 00:00 UTC

22 Sep. 2017 
at 00:00 UTC 5 min

3 Radio Flux 10.7 28 Aug. 2017 
at 00:00 UTC

21 Sep. 2017 
at 00:00 UTC 1 day

4 Proton speed km/s 28 Aug. 2017 
at 00:00 UTC

22 Sep. 2017 
at 00:00 UTC 1 hour

5 Proton density Protons/cm 3 28 Aug. 2017 
at 00:00 UTC

22 Sep. 2017 
at 00:00 UTC 1 hour
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Import and consolidation of data
Data transformation
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Sparse matrix
Data transformation. Aggregate data to equal sampling rates
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Max (mean) scale
Data transformation. Aggregate data to equal sampling rates
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Cubic spline interpolation using Hermite 
polynomials (PCHIP)

Data transformation: Filling and interpolation missing data
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Correlation analysis of input factors
Data transformation. Reduce of task dimension

P > 1 P > 5 P > 10 P > 30 P >50 P > 100 E > 0.8 E > 2.0 Speed Density Radio 
Flux 10.7

P > 1 1.00
P > 5 0.77 1.00
P > 10 0.66 0.97 1.00
P > 30 0.56 0.91 0.98 1.00
P > 50 0.52 0.87 0.95 0.99 1.00
P > 100 0.45 0.78 0.87 0.94 0.98 1.00
E > 0.8 –0.19 –0.12 –0.05 0.01 0.03 0.06 1.00
E > 2.0 –0.20 –0.17 –0.12 –0.09 –0.07 –0.06 0.81 1.00
Speed 0.26 0.11 0.09 0.07 0.07 0.07 0.13 0.02 1.00
Density 0.27 0.13 0.09 0.07 0.06 0.04 –0.38 –0.19 0.00 1.00
Radio Flux 
10.7 0.12 –0.04 –0.15 –0.20 –0.19 –0.16 –0.07 –0.22 –0.11 –0.10 1.00
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Normalized input parameters of proton flows (a), 
electron flows (b), speed, density, and Radio Flux (c).

Data transformation. Reduce of task dimension
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Consolidated correlation lag analysis of input 
factors

Data transformation. Reduce of task dimension

P > 1 P > 5 P > 10 P > 30 P > 50 P > 100 E > 0.8 E > 2.0 Speed Density Radio Flux 
10.7

Wind speed of the Irma hurricane
Max 0.21 0.37 0.33 0.20 0.20 0.18 0.73 0.54 0.39 0.07 0.86
Lag 6 6 7 7 7 9 14 13 20 7 6

Pressure of the Irma hurricane
Min –0.38 –0.46 –0.43 –0.33 –0.33 –0.22 –0.81 –0.61 –0.51 0.03 –0.91
Lag 7 6 7 7 7 9 14 14 20 7 9

Wind speed of the Jose hurricane
Max 0.44 0.13 0.12 0.13 0.14 0.16 0.18 0.21 0.45 0.15 0.72
Lag 7 0 0 0 0 0 20 20 3 12 18

Pressure of the Jose hurricane
Min –0.37 –0.02 –0.02 –0.07 –0.09 –0.11 –0.33 –0.25 –0.53 –0.24 –0.47
Lag 7 10 0 0 0 0 0 20 4 12 19

Wind speed of the Katia hurricane
Max 0.55 0.57 0.65 0.68 0.62 0.74 0.68 0.61 0.66 0.51 0.84
Lag 0 9 11 2 12 11 19 19 0 1 17

Pressure of the Katia hurricane
Min –0.58 –0.70 –0.68 –0.76 –0.65 –0.77 –0.76 –0.68 –0.71 –0.53 –0.91
Lag 1 9 11 2 2 11 19 19 0 1 17
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Parallel calculations for finding optimal models

Creation and training of model ensembles. Linear models

where  is time series of the wind speed and the pressure of Irma, Jose, and 
Katia hurricanes respectively;  is time series of P > 100, E > 2.0, speed of 
solar wind particles, density of solar wind particles, and Radio Flux 10.7 
respectively.
The  task  is  to  find  for  each   the  most  accurate  and  adequate 
functional dependence of the type:

where                          is the vector of optimal lags and         is parameter of the 
linear or the artificial neural network model
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Parallel calculations for finding optimal models

Creation and training of model ensembles. Linear models

where                        is the cross-validation results for k-blocks (k-fold cross-
validation),       the parameter of the model, which is determined by fitting the initial 
model data to the target vector, the fitting method depends on the type of model 
(linear, neural network, etc.). The optimization was done by completely scanning all 
possible combinations of the lag vector        for each component of                       
from 0 to 22. The magnitude of the maximum lag was chosen from the preliminary 
analysis of the Table 4, where the maximum lag was 20

!16



Parallel calculations for finding optimal models

Creation and training of model ensembles. Linear models

In this case, the set of lag combinations is defined as the Cartesian product of the test 
lag vectors for each input parameter and is 235· 11 · 6 = 424,798,638

The implementation of the Cartesian product by means of Python was carried out as follows
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Parallel calculations algorithm for finding an 
optimal model

Creation and training of model ensembles. Linear models

1.The first maximum number of lags is determined lag = 0. 
2.A set of tasks is formed based on the equation (7): 
3.For the first run Tasks (lag). 
4.For the next runs in order to avoid repetitions of tasks the difference of sets 

needs to be calculated Tasks (lag) '= Tasks (lag) \ Tasks (lag-1). 
5.The optimal model is found according to equation (6). 
6.If the maximum lag value for any component of the optimal model does not 

exceed lag-2, it is assumed that the optimal value is found and the algorithm 
is completed. 

7.If lag = 22, the algorithm is completed and is considered to have no optimal 
value. 

8.Increase lag + = 1 and move to step 1.
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Multilayer perceptrons 
Creation and training of model ensembles. Artificial Neural Network models

ANN: 
Type: Multilayer perceptrons (MLPs) with back 
propagation 
Inputs: 5 
Output:1 
Hidden layer: 1 
Number of neurons: 7 
Method of training: quasi-Newtonian  
Activation function: logistic function  

Python: 
framework: sklearn.neural_network 
function: MLPRegressor  
fitting: fit and cross_val_predict
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Ensemble of models by Delphi  method
Creation and training of model ensembles. Artificial Neural Network models

1. Several neural networks were created and studied for each model according to 
equation (5). In our case, their optimal number was nine. Their increase did not 
improve the result. 

2. Predictive values were calculated on the test sets of data using the cross-validation 
method for each of the networks. The result was a matrix of type: 

where m is the size of the training sample for a particular vector of the goals, the 
upper index is the serial number of the neural network. 
3. Each column was sorted and then 10% of records with minimum and maximum 

values were removed from the records. 
4. For the remaining values for each of the columns the median was determined, 

which was considered to be the result.
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Recurrent neural network with long short-term 
memory (LSTM)

Creation and training of model ensembles. Artificial Neural Network models

LSTM: 

Inputs: 6 
Output:1 
Hidden layer: 1 LSTM 
Number of neurons: 7 
Method of training: adam  
Loss function: mse  

Python: 
framework: TensorFlow 
fitting: fit and cross_val_predict
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Recurrent neural network with long short-term 
memory (LSTM)

Creation and training of model ensembles. Artificial Neural Network models

where t – row index, L– maximum lag value, і – target index (2)
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Cross-validation
Creation and training of model ensembles. Artificial Neural Network models
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Overfitting test. Dynamics of the mean square error 
during the fitting LSTM for the training and test samples

Creation and training of model ensembles. Artificial Neural Network models
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Parallel calculations results of artificial neural 
networks and linear models

Adequacy testing and sensitivity analysis

Results of hurricane forecasting with linear models and artificial neural networks for: (a) Wind speed of the 
Irma hurricane, (b) Pressure of the Irma hurricane, (c) Wind speed of the Jose hurricane, (d) Pressure of the 
Jose hurricane, (e) Wind speed of the Katia hurricane, (f) Pressure of the Katia hurricane
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Accuracy analysis
Adequacy testing and sensitivity analysis

Hurrican
e Parameter 

Model Numbers of 
tests models Lags 

R2 

Full dataset 
R2 Cross 
validation Equation Type 

Irma 

Wind 
speed 

!"#$, &",Ω"()*+ Linear 1,048,576 
&" =(3, 13, 11, 2, 7) 

0.89 0.85 

{!"($, &", Ω"/00)} ANN 99 0.89 0.75 

3!"#$45,(, &(678,Ω"(678+9 LSTM 99 &(678 = {:) = 1,4====}	)?",@==== 0.98 0.88 

Pressure 

!A#$, &A,ΩA()*+ Linear 759,375 
&A = (2, 2, 12, 11, 10) 

0.90 0.88 

{!A($, &A, ΩA/00)} ANN 99 0.90 0.87 

 3!A#$45,( , &(678,Ω"(678+9 LSTM 99 &(678 = {:) = 1,4====}	)?",@==== 0.99 0.93 

Jose 

Wind 
speed 

!4#$, &B,ΩB()*+ Linear 5,153,632 
&4 = (4, 19, 3, 14, 18) 

0.86 0.77 

{!4($, &B, ΩB/00)} ANN 99 0.86 0.74 

3!4#$45,( , &(678,Ω"(678+9 LSTM 99 &(678 = {:) = 1,4====}	)?",@==== 0.98 0.61 

Pressure 

!B#$, &B,ΩB()*+ Linear 5,153,632 
&B = (5, 2, 4, 11, 19) 

0.69 0.56 

{!B($, &B,ΩB/00)} ANN 99 0.58 0.70 

 3!B#$45,( , &(678,Ω"(678+9 LSTM 99 &(678 = {:) = 1,4====}	)?",@==== 0.98 0.45 

Katia 

Wind 
speed 

!C#$, &C,ΩC()*+ Linear 100,000 
&C = (2, 6, 0, 4, 4) 

0.98 0.96 

3!C#$, &C, ΩC/00+9 ANN 99 0.72 0.34 

3!C#$45,( , &(678,Ω"(678+9 LSTM 99 &(678 = {:) = 1,4====}	)?",@==== 0.95 0.48 

Pressure 

!@#$, &@,Ω@()*+ Linear 59,049 
&@ = (5, 2, 3, 1, 0) 

0.98 0.96 

{!@($, &@, Ω@/00)} ANN 99 0.65 0.53 

 3!C#$45,( , &(678,Ω"(678+9 LSTM 99 &(678 = {:) = 1,4====}	)?",@==== 0.99 0.38 

Total  
 Linear 12,274,264 

 
 

 ANN 594  

   LSTM 594   

 1 
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Linear models
Adequacy testing and sensitivity analysis
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Sensitivity analysis
Adequacy testing and sensitivity analysis
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Sensitivity analysis
Adequacy testing and sensitivity analysis

Hurricane Parameter Model P > 100 E > 2.0 Speed Density Radio Flux 10.7

Irma

Wind speed
Linear –0.63% 0% –2.51% 0% 14%
ANN –0.65% 0% –2.64% 0% 13%
LSTM -13% -9% -28% 40% 0%

Pressure
Linear 0% –0.04% 0% 0% –1.36%
ANN 0% –0.04% 0% 0% –1.36%
LSTM 0% -1% -2% -1% 0%

Jose

Wind speed
Linear –0.26% 1% 9% 1% 11%
ANN –0.26% 1% 9% 1% 11%
LSTM -0% -18% 2% -4% 124%

Pressure
Linear 0% –0.04% –0.42% –0.04% –0.53%
ANN 0% 1% 4% 0% 5%
LSTM -0% -0% -7% 4% -45%

Katia

Wind speed
Linear –1.07% –1.19% 18% –1.17% 75%
ANN 0% –1.30% 9% –0.64% 3%
LSTM 5% 25% 548% 207% 1%

Pressure
Linear –0.02% 0% 1% –0.07% 1%
ANN 0% –0.14% 3% 1% 7%
LSTM -3% 1% 7% -10% -8%
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Sensitivity analysis
Adequacy testing and sensitivity analysis

Hurricane Parameter Model P > 100 E > 2.0 Speed Density Radio Flux 10.7

Irma

Wind speed
Linear –0.63% 0% –2.51% 0% 14%
ANN –0.65% 0% –2.64% 0% 13%
LSTM -13% -9% -28% 40% 0%

Pressure
Linear 0% –0.04% 0% 0% –1.36%
ANN 0% –0.04% 0% 0% –1.36%
LSTM 0% -1% -2% -1% 0%

Jose

Wind speed
Linear –0.26% 1% 9% 1% 11%
ANN –0.26% 1% 9% 1% 11%
LSTM -0% -18% 2% -4% 124%

Pressure
Linear 0% –0.04% –0.42% –0.04% –0.53%
ANN 0% 1% 4% 0% 5%
LSTM -0% -0% -7% 4% -45%

Katia

Wind speed
Linear –1.07% –1.19% 18% –1.17% 75%
ANN 0% –1.30% 9% –0.64% 3%
LSTM 5% 25% 548% 207% 1%

Pressure
Linear –0.02% 0% 1% –0.07% 1%
ANN 0% –0.14% 3% 1% 7%
LSTM -3% 1% 7% -10% -8%
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Detroit (USA) weather forecasting by LSTM 
ensemble
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Examples



Linear vs ANFIS. Portugal
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Hurricanes forecasting by ANFIS
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Forest fires forecasting for USA
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Sensitivity of factors
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Conclusions
Considering the potential prognostic models, one should certainly bear in mind that for solar flares from 

active regions located at the East of the helilongitude, the time delay (between emission and the ground level 
enhancement onset) can be from several hours up to days. Almost all diffusion models involving solar particle 
transport in the interplanetary medium show that the maximum time delay is proportional to the square of the 
distance traveled.  

The efficiency of the penetration depends on the degree to which the interplanetary magnetic field 
provides input of the particle flux to the region with the given angle and/or in what percent relation the 
particles of the given direction are present in the flux with a high angular isotropy. 

Research in this paper has shown that applied model is accurate and adequate to predict the appearance of 
hurricanes 2–4 days ahead, after the outbreak of SW. High correlation coefficients sustain the previous 
conclusion. About 90% of variations of the Irma hurricane can be explained by the model. Jose is the hurricane 
in the Pacific Ocean, which has larger scale, and therefore the processes of the influence of external factors are 
more inertial, which explains a bigger lag in the calculations. The sensitivity analysis revealed that Radio Flux 
10.7 has the greatest impact on wind speed of the hurricanes, except in the case of the Katia hurricane. In the 
general picture of the change in pressure and wind speed over a longer period, there are other factors that were 
not taken into account in the model. Therefore, the model for Jose was less accurate, but quite adequate. The 
Katia hurricane was the least lengthy and the data were not enough to test the hypothesis in this case. In all 
cases LSTM models showed the best results. But for effective use it the big data sets should be obtained. 

The coupling of the stratosphere with surface climate is one good candidate to better understand the 
signals of the future climate changes. Vertical wind shear was shown to be a much more fundamental 
component for major hurricane development and maintenance 
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