Milan Milenković, Vladan Ducić, Jovan Mihajlović, Dragan Burić, Violeta Babić


In Finland, in the period 1996–2017, 28,434 forest fires were recorded (an average of 1,292.5 per year), and the total burned area was 11,922 ha (an average of 541.9 ha per year). In both cases, a statistically non-significant downward trend was recorded. Forest fires in Finland do not represent a particularly significant problem, primarily due to climatic characteristics, well-organized fire protection, and low density of population. The research of climate influence included the Atlantic Multidecadal Oscillation (AMO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO). The statistically significant values (p ≤ .05) of Pearson correlation coefficient were recorded for the August values of NAO and the surface area of burned forest (−0.44), the June values of NAO and the average surface area of forest burned per fire (−0.51) and the May AO values and the average surface area of forest burned per fire (−0.45). For the June values of NAO and the average surface area of forest burned per fire, the Lomb periodogram shows four significant peaks, and the match is at two, at 2.4 and 3.4 years, which supports the hypothesis of the connection between NAO and forest fires in Finland.


forest fires; Finland; NAO; AO; Lomb periodogram

Full Text:



Delworth, T. L., & Mann, M. E. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 16(9), 661–676.

Finnish Forest Association. (2016). Finnish forests resources. Retrieved from

Finnish Forest Association. (2017a). Finland and her forests in a nutshell. Retrieved from

Finnish Forest Association. (2017b). Distribution of tree species in Finland. Retrieved from

Finnish Meteorological Institute. (2015). The forest fire index [Web page]. Retrieved from

Irannezhad, M., Moradkhani, H., & Kløve, B. (2018). Spatiotemporal variability and trends in extreme temperature events in Finland over the recent decades: Influence of Northern Hemisphere teleconnection patterns. Advances in Meteorology, 2018, Article ID 7169840, 1–17.

Johnsen, T. (2018). Forest fires in Sweden - huge areas burned in 2018 [Post]. Retrieved from

Kauppi, A. (2018). Finland has a problem with too few forest fires – to promote biodiversity, burned-down areas should be protected [Web page]. Retrieved from

Kilpeläinen, A., Kellomäki, S., Strandman, H., & Venäläinen, A. (2010). Climate change impacts on forest fire potential in boreal conditions in Finland. Climatic Change, 103(3-4), 383–398.

Larjavaaraa, М., Pennanena, Ј., & Tuomib, Т. Ј. (2005). Lightning that ignites forest fires in Finland. Agricultural and Forest Meteorology, 132(3–4), 171–180.

Lehtonen, I., Ruosteenoja, K., Venäläinen, A., & Gregow, H. (2014). The projected 21st century forest-fire risk in Finland under different greenhouse gas scenarios. Boreal Environment Research, 19(2), 127–139. Retrieved from

Lehtonen, I., Venälaïnen, A., Kämäraïnen, M., Peltola, H., & Gregow, H. (2016). Risk of large-scale fires in boreal forests of Finland under changing climate. Natural Hazards and Earth System Sciences, 16(1), 239–253.

Mäkelä, H. M., Laapas, M., & Venäläinen, A. (2012). Long-term temporal changes in the occurrence of a high forest fire danger in Finland. Natural Hazards and Earth System Science, 12(8), 2591–2601.

Mäkelä, H. M., Venäläinen, A., Jylhä, K., Lehtonen, I., & Gregow, H. (2014). Probabilistic projections of climatological forest fire danger in Finland. Climate Research, 60(1), 73–85.

Mikkonen, S., Laine, M., Mäkelä, H. M., Gregow, H., Tuomenvirta, H., Lahtinen, M., & Laaksonen, A. (2015). Trends in the average temperature in Finland, 1847–2013. Stochastic Environmental Research and Risk Assessment, 29(6), 1521–1529.

Milenković, M., Ducić, V., Burić, D., & Lazić, B. (2016). The Atlantic Multidecedal Oscillation (AMO) and the forest fires in France in the period 1980–2014. Journal of the Geographical Institute "Jovan Cvijić" SASA, 66(1), 35–44.

Milenković, M., Radovanović, M., & Ducić, V. (2011). The Impact of Solar activity on the greatest forest fires of Deliblatska peščara (Serbia). Forum Geografic, 10(1), 107–116.

Milenković, M., Yamashkin, A. A., Ducić, V., Babić, V., & Govedar, Z. (2017). Forest fires in Portugal — the connection with the Atlantic Multidecadal Oscillation (AMO). Journal of the Geographical Institute “Jovan Cvijić” SASA, 67(1), 27–35.

National Oceanic and Atmospheric Administration, National Center for Environmental Information. (2019a). North Atlantic Oscillation (NAO) [Web page]. Retrieved from

National Oceanic and Atmospheric Administration, National Center for Environmental Information. (2019b). Arctic Oscillation (AO) [Web page]. Retrieved from

NOAA/ESRL Physical Sciences Division (2019a). Atlantic multidecadal oscillation (AMO) SST Index [Data set]. Retrieved from

NOAA/ESRL Physical Sciences Division (2019b). North Atlantic Oscillation (NAO) [Data set]. Retrieved from

NOAA/ESRL Physical Sciences Division (2019c). Arctic Oscillation (AO) Index [Data set]. Retrieved from

Ministry of the Interior in Finland. (2018). Finland has coped well with fighting forest fires [Press release]. Retrieved from

Parviainen, J. (1996). Impact of fire on Finnish forests in the past and today. Silva Fennica, 30(2–3), 353–359.

Radovanović, M. M., Pavlović, T. M., Stanojević, G. B., Milanović, M. M., Pavlović, M. A., & Radivojević, A. R. (2015). The influence of solar activities on occurrence of the forest fires in South Europe. Thermal Science, 19(2), 435–446.

Radovanović, M. M., Vyklyuk, Y., Milenković, M., Vuković, D. B., & Matsiuk, N. (2015). Application of ANFIS models for prediction of forest fires in the USA on the basis of solar activity. Thermal Science, 19(5), 1649–1661.

Radovanović, M. M., Vyklyuk, Y., Stevančević, M., Milenković, M., Jakovljević, D., Petrović, M., . . . Škoda, M. (2019). Forest fires in Portugal – Case study, 18 June 2017. Thermal Science, 23(1), 73–86.

San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., . . . Leray, T. (2018). Forest Fires in Europe, Middle East and North Africa 2017 (JRC Publication No. JRC112831). Retrieved from

Suffling, R. (1992). Climate change and boreal forest fires in Fennoscandia and central Canada. Catena Supplement, 22, 111–132. Retrieved from

Statistics Finland. (2019a). Environment and Natural Resources. Geographical data [Web page]. Retrieved from

Statistics Finland. (2019b). Population. Population structure on 31 December [Web page]. Retrieved from

Tietäväinen, H., Tuomenvirta, H., & Venäläinen, A. (2010). Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology, 30(15), 2247–2256.

Vainio, T. (2001). The forest fire situation in Finland. Int. Forest Fire News, 24, 17–22. Retrieved from

Vajda, A., Venäläinen, A., Suomi, I., Junila, P., & Mäkelä, H. M. (2014). Assessment of forest fire danger in a boreal forest environment: Description and evaluation of the operational system applied in Finland. Meteorological Applications, 21(4), 879–887.

Venäläinen, A., Korhonen, N., Hyvärinen, O., Koutsias, N., Xystrakis, F., Urbieta, I. R., & Moreno, J. M. (2014). Temporal variations and change in forest fire danger in Europe for 1960-2012. Natural Hazards and Earth System Sciences, 14(6), 1477–1490.

Wang, C., Lee, S.-K., & Enfield, D. B. (2008). Atlantic Warm Pool acting as a link between Atlantic Multidecadal Oscillation and Atlantic tropical cyclone activity. Geochemistry, Geophysics, Geosystems, 9(5), Q05V03.

World Bank Group. (2019). Download Data [Web page]. Retrieved from



  • There are currently no refbacks.

Copyright (c) 2019 Journal of the Geographical Institute “Jovan Cvijić” SASA

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial - NoDerivs 4.0

Printed edition: ISSN 0350-7599

Electronic edition: ISSN 1821-2808

Publisher: Geographical Institute “Jovan Cvijić” SASA (Serbian Academy of Sciences and Arts), Djure Jakšića 9, Belgrade 11000, Serbia