THE ASSESSMENT OF ARIDITY IN LESKOVAC BASIN, SERBIA (1981–2010)

Nikola Milentijević, Jovan Dragojlović, Dušan Ristić, Marija Cimbaljević, Dunja Demirović, Aleksandar Valjarević

Abstract


In the paper, the aridity is defined on the basis of four climate indices: De Martonne's index of aridity, Lang’s Rain Factor and Gračanin’s Rain factor for the vegetation period and hydrothermal coefficient of Seljaninov. While the annual value of the drought index (IDM) shows humid characteristics, the monthly values show the variability of the conditions. The summer months (July and August) are classified as semi-arid months, while the winter months (December–February) are extremely humid. The spatial distribution of the isoarids indicates that the northern part of the basin has the characteristics of a semiarid climate, while the southeastern parts are more humid. The analysis of mean annual values of the drought index indicates in semiarid conditions (1990 and 2000), but also the humid conditions (2005 and 2009). A positive linear trend indicates that there is a tendency towards humid conditions. The significance test confirms the existence of a statistically significant trend. During the vegetation period, semi-arid conditions are present (July–August). April is slightly humid, and October is moderately arid. The Lang’s Rain Factor (KFg) characterizes basin climate as semiarid, while the Gračanin rain factor for the vegetation period (KFm) indicates a moisture deficit in the summer months. Hydrothermal coefficient Seljaninova (HTC) indicates a lack of moisture in July and August. Vegetation period is characterized as insufficiently humid. Irrigation is one of the most important measures for solving drought problems, since the yield varies from year to year.


Keywords


aridity; Leskovac basin; climatic indices; irrigation

Full Text:

PDF

References


Agnew, C., & Anderson, W. (1992). Water in the arid realm. London, UK: Routledge.

Aranđelović, I., Mitrović, Z. & Stojanović, V. (2011). Probability and statistics (Verovatnoća i statistika). Belgrade, Serbia: Zavod za udžbenike i nastavna sredstva.

Armenski, T., Stankov, U., Dolinaj, D., Mesaroš, M., Jovanović, M., Pantelić, M., Pavić, D., Popov, S., Popović, Lj., Frank, A. & Ćosić, Đ. (2014). Social and Economic Impact of Drought on Stakeholders in Agriculture, Geographica Pannonica, 18(2), 34–42. doi: https://10.5937/GeoPan1402034A

Bačević, N., Vukoičić, D., Nikolić, M., Janc, N., Milentijević, N., & Gavrilov, B. M. (2017). Aridity in Kosovo and Metohija, Serbia. Carpathian Journal of Earth and Environmental Sciences, 12(2), 563–570. Retrieved from http://www.ubm.ro/sites/CJEES/viewTopic.php? topicId=706

Baltas, E. (2007). Spatial distribution of climatic indices in Northern Greece. Meteorological Applications, 14(1), 69–78. doi: https://10.1002/met.7

Bauer, R. J. & Rose, K. (2015). Variable Grid Method: An Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty. Transactions in GIS, 19(3), 377–397. doi: https://doi.org/10.1111/tgis.12158

Croitoru, А. Е., Piticar, А., Imbroane, А. М. & Burada, D. C. (2013). Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theoretical and Applied Climatology, 112, 597–607. doi: https://10.1007/s00704-012-0755-2

De Martonne, E. (1925). Traité de Géographie Physique, Vol I: Notions generales, climat, hydrographie. Geographical Review, 15(2), 336–337.

Ducić, D. & Radovanović, М. (2005). Serbian Climate (Klima Srbije). Belgrade, Serbia: Zavod za udžbenike i nastavna sredstva.

Dukić, D (1980). Climatology (Klimatologija). Belgrade, Serbia: Faculty of Geography.

Fisher, R. A. (1925). Statistical Methods for Research Workers. Edinburgh, UK: Oliver and Boyd.

Franke, R. (1982). Scattered Data Interpolation: Tests of Some Methods. Mathematics of Computation, 38(157), 181–200. doi: https://10.2307/2007474

Gocić, M., & Trajković, S. (2013). Analysis of Precipitation and Drought Data in Serbia Over the Period 1980-2010. Journal of Hydrology, 494, 32–42. doi: https://10.1016/j.jhydrol.2013.04.044

Golubović, P. (2001). Geography of Yugoslavia (Geografija Jugoslavije). Niš, Serbia: Faculty of Mathematics.

Hennemuth, B., Bender, S., Bülow, K., Dreier, N., Keup-Thiel, E., Krüger, O., Mudersbach, C., Radermacher, C., & Schoetter, R. (2013). Statistical methods for the analysis of simulated and observed climate data, applied in projects and institutions dealing with climate change impact and adaptation. Retrieved from https://www.climate-service-center.de/products_and_publications/publications/detail/062667/index.php.en

Hrnjak, I., Lukić, T., Gavrilov, M. B., Marković, B. S., Unkašević, M., & Tošić, I. (2014). Aridity in Vojvodina (Serbia). Theoretical and Applied Climatology, 115(1–2), 323–332. doi: https://10.1007/Soo704-103-0893-1

Hydrological Observatory of Athens, NTUA. (2012). Monthly de Martonne Aridity Index. Retrieved from http://hoa.ntua.gr/contours/monthlyidm/

IPCC, Intergovernmental Panel on Climate Change. (2007). Climate change. The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge and New York.

Ivanović, R., Bursać-Martić, N., & Đokić, М. (2007). Agroklimatske karakteristike Leskovačke kotline (Agroclimatic characteristics of the Leskovac basin). Journal of the Geographical Institute “Jovan Cvijić” SASA, 57, 87–93. doi: https://doi.org/10.2298/IJGI0757087I

Komac, B., Zorn, M., Gavrilov, M. B., & Marković, B. S. (2013). Natural hazards - some introductory thoughts. Acta Geographica Slovenica, 53(1), 143–147. doi: https://10.3986/AGS53300

Maliva, R., & Missimer, T. (2012). Aridity and Drought. In Maliva, R., & Missimer, T. (Eds.), Arid Lands Water Evaluation and Management (pp. 21–39). Heidelberg, Germany: Springer. doi: https://10.1007/978-3-642-29104-3_2

Meteorological Yearbooks of Republic Hydrometeorological Service of Serbia — Climatological data. Retrieved from http://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_godisnjaci.php

Mishra, K. A., & Singh, P. V. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2). 202–216. doi: https://doi.org/10.1016/j.jhydrol.2010.07.012

Mudelsee, M. (2010). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Dordrecht, The Netherlands: Springer.

Oliver, E. J. (2005). Aridity Indexes. In E. J. Oliver (Eds.), Encyclopedia of World Climatology (pp. 89-94). Dordrecht, The Netherlands: Springer.

Otorepec, S. (1991). Agrometeorology (Agrometeorologija). Belgrade, Serbia: Naučna knjiga.

Pavlovic, М., Markovic, Ј. (1995). Geografske regije Jugoslavije (Geographical regions of Yugoslavia). Belgrade, Serbia: IŠP “Savremena administracija”.

Radaković, G. M., Tošić, I., Bačević, N., Mladjan, D., Gavrilov, B. M. & Marković, B. S. (2018). The analysis of aridity in Central Serbia from 1949 to 2015. Theoretical and Applied Climatology, 133(3–4), 887–898. Retrieved from https://doi.org/10.1007/s00704-017-2220-8

Rakićević, Т. (1988). Regional distribution of drought in Serbia (Regionalni raspored suše u Srbiji). Gazette of Serbian Geographical Society, LXVIII, 1, 9–18. Retrieved from http://www.digitalna.nb.rs/wb/NBS/casopisi_pretrazivi_po_datumu/glasnik_srpskog_geografskog_drustva/1988/b068#page/4/mode/1up

Sailesh, S., Dilip, K. P., Debasish, L., & Pal, B. (2011). Interpolation of climate variables and temperature modeling. Theoretical and Applied Climatology, 107(1–2). 35–45. doi: https://doi.org/10.1007/s00704-011-0455-3

Šegota, T., & Filipčić, A. (1996). Climatology for geographers (Klimatologija za geografe). Zagreb, Croatia: Školska knjiga.

Spasov, P. (2003). Pojava suše u Srbiji, njeno praćenje i mogućnosti prognose (Drought occurrence in Serbia, its monitoring and forecasting possibilities). Vodoprivreda (Water management), 35(1–2), 30–36.

Spinoni, J., Naumann, G., & Vogt, V. J. (2017). Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Change, 148, 113–130. doi: https://doi.org/10.1016/j.gloplacha.2016.11.013

Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1). pp. 55–94. Retrieved from https://www.jstor.org/stable/ 210739?seq=1#page_scan_tab_contents

Trenberth, K. E., Fasullo, J. T., & Shepherd, T. G. (2015). Attribution of climate extreme events. Nature Climate Change, 5(8), 725–730. doi: https://doi.org/10.1038/nclimate2657

UNESCO - United Nations Educational, Scientific and Cultural Organization. (1979). Map of the world distribution of arid regions: map at scale 1:25,000,000 with explanatory note, MAB technical notes 7. UNESCO, Paris.

Urošev, M., Dolinaj, D., & Štrbac, D. (2016). At-site hydrological drought analysis: Case study of Velika Morava River at Ljubičevski most (Serbia). Journal of the Geographical Institute “Jovan Cvijić” SASA, 66(2), 203–220. doi: https://10.2298/IJGI1602203U

Vujević, P. (1956). Climatological statistics (Климатолошка статистика). Belgrade, Serbia: Faculty of Mathematics.

Wang, X., Dusnon, D., & Leng, C. (2016). Proceedings from ICML 2016: The 33rd International Conference on Machine Learning. New York City, USA. Retrieved from http://wrap.warwick.ac.uk/79169/




DOI: http://dx.doi.org/10.2298/IJGI1802249M

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Journal of the Geographical Institute “Jovan Cvijić” SASA

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial - NoDerivs 4.0

Printed edition: ISSN 0350-7599

Electronic edition: ISSN 1821-2808

Publisher: Geographical Institute “Jovan Cvijić” SASA (Serbian Academy of Sciences and Arts), Djure Jakšića 9, Belgrade 11000, Serbia